If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.5t^2+3t-2=0
a = 4.5; b = 3; c = -2;
Δ = b2-4ac
Δ = 32-4·4.5·(-2)
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{5}}{2*4.5}=\frac{-3-3\sqrt{5}}{9} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{5}}{2*4.5}=\frac{-3+3\sqrt{5}}{9} $
| 2^2x+7=8x | | 60+.5x=56+.75x | | 3x-8=19+1 | | -16=4-2x+7x | | x-6=-x+18 | | 12-x=6x+5 | | 60+3x=38+5x | | 5x3=23 | | -5m+8=23 | | n-1.5=4(n-1.5) | | 5x+7=10x-16 | | 40+9x=5 | | 7x+1=x+11 | | 3x+18=x+36 | | 16-3p=2/3=5 | | (x-2)+(x)+(x+2)-(x-2)+(x)+(x+2)=21 | | 60+.5x=58+.75x | | 4y+20=6y | | 8z-22=-3z+33 | | 100+5x=26+6x | | 9s/2=44 | | -1(v-1)=-6v+16 | | 8z-22=-3z=33 | | 14/4=z/25 | | 5/2x+1/2x=2-1/2+7/2x | | 12x-6=-4x+18 | | -28=7w=7 | | 3^(2x-1)=11 | | 2+5x)= | | 3x=180,x | | 60+3x=20+5x | | 2/3x3/4-1/6=1/3 |